On the least prime ideal and Siegel zeros

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Landau-siegel Zeros

In this paper we show that, under the assumption that all the zeros of the L-functions under consideration are either real or lie on the critical line, one may considerably improve on the known results on Landau-Siegel zeros.

متن کامل

Siegel zeros of Eisenstein series

(m,n)6=(0,0) y |mz+n|2s is the nonholomorphic Eisenstein series on the upper half plane, then for all y sufficiently large, E(z, s) has a ”Siegel zero.” That is E(z, β) = 0 for a real number β just to the left of one. We give a generalization of this result to Eisenstein series formed with real valued automorphic forms on a finite central covering of the adele points of a connected reductive al...

متن کامل

The Dual of a Strongly Prime Ideal

Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...

متن کامل

Prime Pairs and Zeta’s Zeros

There is extensive numerical support for the prime-pair conjecture (PPC) of Hardy and Littlewood (1923) on the asymptotic behavior of π2r(x), the number of prime pairs (p, p + 2r) with p ≤ x. However, it is still not known whether there are infinitely many prime pairs with given even difference! Using a strong hypothesis on (weighted) equidistribution of primes in arithmetic progressions, Golds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2016

ISSN: 1793-0421,1793-7310

DOI: 10.1142/s1793042116501335